
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, S.W., Washington, D.C. 20024

AIAA-2003-3670
Cartesian-Grid Simulations of a
Canard-Controlled Missile with a Spinning Tail

Scott M. Murman
ELORET
Moffett Field, CA

Michael J. Aftosmis
NASA Ames Research Center
Moffett Field, CA

21st AIAA Applied Aerodynamics Conference
June 23-26, 2003 / Orlando, FL



AIAA-2003-3670

Cartesian-Grid Simulations of a

Canard-Controlled Missile with a Spinning Tail

Scott M. Murman∗

ELORET
MS T27B

Moffett Field, CA 94035
smurman@nas.nasa.gov

Michael J. Aftosmis†

NASA Ames Research Center
MS T27B

Moffett Field, CA 94035
aftosmis@nas.nasa.gov

Abstract

The paper presents a series of simulations of a geometrically-complex, canard-controlled, supersonic
missile with free-spinning tail fins. Time-dependent, relative-motion simulations were performed using
an inviscid Cartesian-grid-based method at three angles of attack. Two methods of modeling the
spinning tail section are compared; an imposed tail spin rate such that the net rolling moment on the
empennage is zero, and a free-to-spin configuration using a constrained 6-DOF motion. Computational
results are compared with high-resolution Navier-Stokes computations. The results indicate that the
choice of a static, forced-spin, or free-to-spin analysis cannot in general be made a priori. Further, the
behavior of the dynamic tail section is likely multi-valued, and hence the state for any configuration is
dependent upon the past history of the missile.

1 Introduction

Over the past decade, static Computational
Fluid Dynamics (CFD) simulations over increas-
ingly complex vehicles have become commonplace.
In this evolution, non-body-fitted Cartesian grid
methods have proven to be particularly useful
for automatically meshing geometrically-complex
vehicles[1–6]. Recently this class of meshing and
solution techniques has been extended to dynamic
simulations[7–10], where components of the ge-
ometry move in some manner during the simu-
lation. This makes highly-automated simulations
of complex three-dimensional vehicles with compo-
nents in relative motion more feasible. The current
work adopts a non-body-fitted Cartesian method
to study the performance of a supersonic, canard-
controlled missile with a free-spinning tail. On this
type of vehicle, the tail fins are free to spin as a unit
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around the missile longitudinal axis. As a result,
torque from aerodynamic loads on the empennage
causes the fin system to spin, even under steady-
state flight conditions.

Missiles with dynamic components can pose sig-
nificant challenges for numerical simulation. In the
present example, the spinning tail is a by-product
of the forces on the missile and is integral to its
aerodynamic performance. Nevertheless, the per-
formance of the missile is often characterized by the
spin-averaged aerodynamic coefficients, and hence
time-dependent, moving-body simulations are re-
quired to predict even static stability and control
(S&C) information.∗ Moreover, the spin-rate of the
fin system is governed not only by the wind vector
and canard deflections, but also by the strength and
location of the convected canard vortices, whose in-
duced velocity field differentially loads the tail fins
at low angles of attack. The need to convect the
canard vortices over the length of the missile to
interact with the fin system directly impacts the
size of the computational mesh required for ac-

∗Static here means the absence of higher-order dynamic
stability derivatives, but does still include spinning tail sec-
tion.
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curate numerical simulation. The combination of
these factors makes for CPU-intensive simulations
since the physics requires both highly-resolved spa-
tial grids and time-dependent, moving-body solu-
tion methodologies.

The paper details the missile geometry under
consideration, important features of the computa-
tional mesh, and the numerical method used for
the simulations. The numerical investigations first
concentrate on the flowfield at α = 4.0◦, where
the canard/tail interactions are strongest, and the
spin rate of the tail is expected to be highest.
Steady-state simulations of the missile with the
fins fixed at various azimuths around the missile
axis establish a zero-spin-rate baseline. Dynamic
simulations are then performed with an imposed
spin rate on the tail. An iterative process is used
to determine the spin rate which predicts a zero
spin-averaged torque on the tail. These fixed spin
rate simulations are compared with free-to-spin
simulations obtained using a coupled CFD/6-DOF
approach. The computational results are com-
pared with highly-resolved Navier-Stokes numerical
simulations[11]. The final section extends the anal-
ysis by considering the variation of tail behavior
with angle of attack for fixed canard settings. The
static, forced-spin, and free-to-spin analyses are all
used to provide detailed insight into the complex
dynamic behavior of the tail.

2 Numerical Method

2.1 Geometry and Computational
Mesh

Figure 1 shows three views of the canard-
controlled missile used for this study. The missile
is depicted with the tail in the + position, corre-
sponding to a tail rotation angle of φtail = 45◦.
Zero rotation angle is obtained when the tail is
in the × position, and positive rotation is clock-
wise when observed from the missile nose. The
canards are shown in their deflected position –
pitched asymmetrically with δc = 16◦ to command
a starboard yaw of the missile. The missile body
has a cylindrical cross-section with a fineness ratio
(length/diameter ratio) of about 15.0. Two con-
duits, which are raised off the body and anchored at
regular intervals leaving a small gap, run the length
of the body. In addition, the missile has a ring of
10 bluff protuberances at roughly the mid-station

of the body, and several others at the aft end near
the free-spinning tail fins. The leading edges of the
fins extend forward along the body, and the root
station is cutaway to clear both the conduits and
other hardware as the fins sweep over the missile
body. The minimum clearance is about 1/8th of
the fin thickness, and occurs when the fin passes
over the protuberances on the aft missile body.

Detailed enlargements of the surface triangula-
tion near the nose, mid-body and tail fins are shown
in Fig. 2. The tail is in the + position which puts
the upper and lower fins over two of the conduits
and the other two fins over protuberances in the
aft missile forebody. This triangulation was pro-
duced directly from CAD solids without requiring
any user input using the automatic triangulation
software described in [12]. This software uses the
CAPRI library[13, 14] to access the CAD geometry
using the CAD system’s native query routines and
geometry engine. The final triangulation (shown)
uses approximately 400,000 triangles which were
used as input to the Cartesian mesh generation
system[5].

Tail Rotation

Canards Set to Provide
Starboard Yaw

cδ

Figure 1: Front, side and isometric view of generic missile
with free-spinning tail. For the simulations presented, all 4
canards are deflected δc = 16◦ to command a starboard yaw
of the missile. The tail is shown in the + configuration which
corresponds to a tail rotation angle, φtail = 45◦. φtail = 0◦

is obtained with the empennage in the × position.

(a) (b) (c)

Figure 2: Surface mesh detail of missile configuration,
400,000 triangles.
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Figure 3 shows the non-body-fitted baseline
Cartesian mesh used for the simulations. This fig-
ure shows the tail fin in the × position (φtail = 0◦),
and the mesh is displayed by several cutting planes
behind and perpendicular to the missile axis. In
computing flows around canard-controlled missiles,
it can be very important to avoid excessively dis-
sipating the canard vortices as they convect the
length of the missile body. To provide this resolu-
tion, the mesh has a pre-specified adaptation region
covering the entire missile, and within this region
the mesh is refined 3 levels further driven by sur-
face curvature as described in [5]. In addition to
the canard vortices, a pre-specified adaptation re-
gion is designed to capture the shocks generated by
many of the surface features on the missile body.
Since streamlines passing through these shocks will
impact the spinning fins, resolution and propaga-
tion of these shocks may be important. Resolu-
tion requirements for the baseline mesh were estab-
lished using guidelines from previous simulations of
canard-controlled missiles[10], and by performing a
mesh resolution study with the current geometry.
As the missile tail spins over the course of the simu-
lation the mesh responds to track the body motion,
re-adapting to the new geometry at each timestep
(cf. [9, 10]). The snapshot shown here has approx-
imately 4 million cells, and this total number of
cells remains roughly constant over the coarse of a
dynamic simulation with the tail section spinning.

Figure 3: Cutting planes through the non-body-fitted
Cartesian mesh used in simulations. Missile is shown with
fins in the × position and canards deflected asymmetrically
δc = 16◦. 4M Cartesian cells.

2.2 Cartesian Moving-Body Flow
Solver

In order to simulate a missile with a spinning
tail section, a scheme that allows rigid bodies to
move relative to each other during a simulation is
needed. A general numerical scheme for solving
time-dependent flows with (optional) rigid-body
motion for unstructured Cartesian meshes was de-
veloped from the parallel, steady-state solver de-
scribed in [15]. A brief overview of the scheme
will be presented here, and complete details can
be found in [9].

2.2.1 Dual-time formulation

Extension of the steady-state flow solver to time-
dependent flows was accomplished using a dual-
time formulation (cf. Refs. [16, 17]),

dQ
dτ

+ R∗ (Q) = 0

R∗ (Q) =
∂Q
∂t

+ R (Q)
(1)

where τ is referred to here as “pseudo-time”, and
is the iterative parameter, and t is the physical
time. Q is the vector of conserved variables, and
R (Q) is an appropriate numerical quadrature of
the flux divergence, 1

V

∮
S
f · ndS. As dQ

dτ → 0 the
time-dependent formulation is recovered. The par-
allel multi-grid solver described in [15] is used to
efficiently converge the inner pseudo-time integra-
tion. This is similar to the scheme outlined by
Jameson[18], however, the semi-implicit approach
of Melson et al.[19] is used here for the physical
time-derivative term.

Various time-dependent schemes can be con-
structed for Eqn. 1 by appropriately discretizing
the time derivative. In the current work, it’s de-
sirable to use an unconditionally-stable, implicit
scheme to allow a large timestep to be chosen based
upon physical considerations rather than a poten-
tially smaller stability-limited timestep. In the
Cartesian embedded-boundary scheme, the cut-cell
polyhedra can have arbitrarily small volumes, and a
stability limit can be very restrictive. Using a large
timestep also reduces the amount of computational
work required to process the moving geometry and
mesh through a complete simulation. In the current
work, the backward Euler and 2nd-order backward
time-integration schemes have both been utilized.
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Figure 4: Schematic of a rigid-body moving through a
Cartesian mesh. Cells cut by the geometry at each timestep
are outlined in blue, and cells swept by the geometry over
the timestep are tinted yellow.

2.2.2 Relative motion

Figure 4 shows a schematic of a rigid-body mov-
ing through a fixed Cartesian mesh over one dis-
crete timestep. Cells cut at the beginning and end
of the timestep are outlined in blue, and the shaded
region highlights cells which have been “swept” by
the body through the timestep. These swept cells
change volume and shape over the timestep, and
can appear or disappear (or both) as well. Away
from the swept region, the cells don’t change and
therefore require no special treatment. The swept-
cells, however constitute the major challenge since
the deformation of these cells over the timestep
needs to be taken into account in order to satisfy
the governing equations. The equations of motion
for the deforming cells can be written in an integral
conservation form as

d

dt

∫
V (t)

QdV = −
∮

S(t)

f · ndS S = ∂V (2)

f · n =

 ρun

ρunu + pn
ρune + pu · n


un = (u−w) · n

Here w is the velocity of the moving boundary with
respect to the Eulerian frame.

Integrating the deforming-cell governing equa-
tions for a representative cell j using the backward-

Euler scheme gives

(QV )n+1
j − (QV )n

j −
∑

ahead

(QV )n =

−∆t
∑ (

f̂ · n∆S
)n+1

j
(3)

∑
ahead (QV )n is a conservation correction term

which represents the flux out of the swept cells over
a timestep (cf. Ref. [9]). Equation 3 can be numer-
ically integrated using the dual-time scheme out-
lined above. The terms (QV )n

j and
∑

ahead (QV )n

become fixed source terms in the dual-time scheme.
(QV )n however is only available on the mesh at
time level n, while it is required on the mesh at
time level n+1 in order to integrate Eqn. 3. (QV )n

is conservatively transferred from the mesh at time
level n to the new mesh at n + 1 external to the
flow solver. The transfer of the solution between
two volumes meshes takes advantage of the space-
filling-curve ordering of the cells in the Cartesian
meshes (cf. Ref. [15, 20]). This allows the transfer
to be performed very efficiently, requiring only two
sweeps over the mesh cell list.

3 Numerical Results

The general 3-D Cartesian scheme outlined
above is utilized to simulate the canard-controlled
missile with spinning tail section described in
Sec. 2.1. The Cartesian moving-body flow solver in-
cludes an interface for the GMP infrastructure[21].
This interface allows the entire analysis to proceed
in a completely automated manner. The analyst
defines a static configuration “space” of discrete tail
orientations to calculate, defines a prescribed mo-
tion of the tail section for a dynamic simulation,
and specifies a constrained 6-DOF simulation for
the same tail section all through an interactive GUI
application. These specified motions and states are
then transfered to the flow solver and the static and
dynamic analyses proceed in parallel without user
intervention.

Since the flow conditions considered in this work
are supersonic (M∞ = 1.6), the geometry upstream
of the tail section is static, and the tail section
has horizontal and vertical symmetry, the flowfield
within the tail section is periodic every 90◦ of spin.
This periodicity was confirmed by the initial dy-
namic simulations. As such, it’s only necessary to
simulate the motion of the tail section through 90◦

of rotation (after the initial transient). A baseline
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angle of attack of α = 4.0◦ is used to introduce the
tail forced-spin-rate and free-to-spin approaches, as
the canard/tail interactions are greatest at this an-
gle of attack, leading to the highest tail spin rate.
Next, the trends of the spinning tail section with
angle-of-attack variation are examined by simulat-
ing α = 0.0◦ and 12.0◦, both with the tail held fixed
and spinning.

3.1 Static Baselines

In order to provide a baseline for comparison
with dynamic, spinning-tail computations, a se-
ries of static, steady-state simulations with the tail
fixed at various (non-uniform) azimuthal orienta-
tions are undertaken for each configuration exam-
ined. A converged steady-state solution with the
tail section in the × configuration (φtail = 0◦) is
used to introduce the features of the flowfield in
Fig. 5. Mach number contours at cutting planes
along the longitudinal axis of the missile highlight
the convection of the canard vortices. A schematic
next to the contour planes shows the orientation
and direction of spin of the vortices. The vortices
shed from the tips of the NW, NE, and SE canards
(following the compass directions viewed from the
nose) convect down the length of the body. The
vortex from the NE canard is stronger than the NW
or SE vortices, as that canard is pitched up, while
the other canards are pitched down. The vortex
shed from the SW canard is “trapped” by the body
as it convects upwards and dissipates. The asym-
metric pitch of the canards causes an induced veloc-
ity which drives the vortices into the NE quadrant,
where they impact the tail section. The induced ve-
locity from the canards changes the local angle of
attack seen by the tail fins, and the canard vortices
also provide suction on the tail fins. This can be
seen quantitatively in Fig. 6, where the variation of
tail rolling moment with angle of rotation from the
× position is shown for a series of static solutions.
A negative tail rolling moment would cause the tail
section to rotate clockwise when viewed from the
nose. As the tail fin approaches the (strongest) NE
canard vortex, the tail rolling moment is strongest
(near φtail = 80◦). As the tail section moves to
the + position (φtail = 45◦), the fins are farthest
from the strong NE canard vortex, and evenly split
(vortex suction inducing both CW and C-CW rota-
tion) between the remaining two vortices, and the
tail rolling moment is nearly the weakest. This dif-
ferential pressure on the tail fin in the NE quad-

rant due to the vortices, along with the effects of
dynamic pressure and angle of attack, and the in-
duced velocity field from the canards all combine to
impart a net rolling moment on the unconstrained
tail, causing it to spin.

Figure 5: Mach number contours (blue is low, red is high)
for a static simulation with tail in × position. The schematic
to the right shows the location and sense of rotation of the
canard vortices. (M∞ = 1.6, α = 4.0◦).
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Figure 6: Tail rolling-moment for the static, fixed-tail sim-
ulations (M∞ = 1.6, α = 4.0◦).

3.2 Forced-spin-rate Tail Section

The rotation rate of the tail section is not known
a priori. In order to determine the “natural” roll
rate of the tail section – the rate at which the spin-
averaged rolling moment on the tail is zero – an it-
erative process is used. First, it’s assumed that the
tail rotation rate is low enough that the variation
of spin-averaged tail rolling moment with rotation
rate is linear. A fixed rotation rate is then imposed
on the tail, which is intended to be a reasonable
guess. The resulting spin-averaged tail rolling mo-
ment from this simulation, along with the static
results discussed above (i.e. a zero-spin-rate simu-
lation) are then fit with a straight line to determine
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the predicted natural roll rate of the tail section. A
second dynamic simulation is then performed at the
natural roll rate in order to confirm the prediction.

An initial guess of 2500 rpm for the tail rotation
rate was used at α = 4◦. A time-resolution study
was performed at this rotation rate using timesteps
that move the tail fins 2◦, 1◦, 0.5◦, 0.3◦, and 0.15◦

of rotation per step respectively. The results of this
time-resolution comparison showed no difference in
tail load vs. rotation angle between the 0.3◦ and
0.15◦ of rotation/timestep simulations, and as a re-
sult 0.3◦ of roll per timestep was utilized for all of
the simulations discussed here. This timestep is
smaller than preferred for computational efficiency
in a dual-time scheme, but is required to accurately
capture the complex physics with the current nu-
merical scheme.

Figure 7 shows the spin-averaged tail rolling mo-
ment against the imposed rotation rate for the it-
erative process discussed above. The variation of
averaged tail rolling moment with rotation rate is
confirmed to be linear, and the predicted natural
rotation rate is 2155 rpm for these conditions. The
variation of tail rolling moment with rotation an-
gle is shown in Fig. 8 for all computations; the
static and the two dynamic with an imposed ro-
tation rate. The simulation with the natural ro-
tation rate does provide nearly zero spin-averaged
tail rolling moment (Cltail = −0.008). As the ca-
nard vortices, canard downwash, and wind vector
do not change when the tail spins, the variation
of tail rolling moment with rotation angle is simi-
lar for all simulations, however shifted as the rota-
tion rate increases. This implies that the rotation
of the tail section provides minor dynamic effects,
and these effects wash downstream without influ-
encing the aerodynamic loads. This is especially
true with a fixed spin rate as there is no accel-
eration of the tail section. When the velocity of
the tail section “balances” the outer flow effects,
a stable spin rate is found. Since the variation in
tail rolling moment is self-similar with fixed spin
rates, it is unnecessary to compute the entire cycle
at the initial guess. Once the increment between
the static and initial guess is known, i.e. after the
transient portion of the cycle has been computed,
this increment can simply be applied to the static
spin-average to obtain the spin-average at the ini-
tial guess. This technique was applied successfully
at α = 12.0◦, the results of which will be discussed
Sec. 3.4.

Mach number contours through the tail section,
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Figure 7: Predicted “natural” tail rotation rate (M∞ =
1.6, α = 4.0◦).
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Figure 8: Tail rolling-moment for static, fixed-tail and dy-
namic, forced-spin-rate simulations (M∞ = 1.6, α = 4.0◦).

viewed from the nose, are shown in Fig. 9 for the
natural rotation rate - 2155 rpm. As the fins en-
counter the vortices there is a strong interaction,
however after the fins pass the vortices reform in
their original positions. A similar series of pres-
sure contours on the surface of the tail section is
shown in Fig. 10. The shocks emanating from the
complex geometry upstream interact with the tail
section as it rotates. The narrow gaps and clear-
ances in the geometry provide no difficulty for the
current method.

3.3 Free-to-spin Tail Section

The forced-spin tail is an approximation to the
actual rotation of the tail section. The actual mo-
tion will respond to the aerodynamic forces as it
spins, and increase or decrease the spin-rate accord-
ingly. In order to assess the efficiency and accuracy
of the forced-spin approximation, simulations with
a free-to-spin tail were performed using the coupled
CFD/6-DOF method outlined in [22]. The 6-DOF
motion is constrained to only allow rotation about
the longitudinal axis of the missile body, effectively
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(a) φtail = 0.0◦/90.0◦

(b) φtail = 22.5◦

(c) φtail = 45.0◦

(d) φtail = 67.5◦

Figure 9: Velocity magnitude contours through the tail
section (red is high, blue is low) viewed from the nose
(φ̇tail = 2155 rpm, M∞ = 1.6, α = 4.0◦).

(a) φtail = 0.0◦/90.0◦

(b) φtail = 22.5◦

(c) φtail = 45.0◦

(d) φtail = 67.5◦

Figure 10: Surface pressure contours on the tail section
(red is high, blue is low). (φ̇tail = 2155 rpm, M∞ = 1.6,
α = 4.0◦).
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limiting this to a 1-DOF simulation. The actual in-
ertia of the tail section is unknown, and is approxi-
mated by assuming the density of the tail section to
be half the density of aluminum (i.e. assume that
the tail section is partially hollow). This assumed
uniform density is used with the surface geometry
to provide an estimate of the rotational inertia re-
quired for the 1-DOF simulations (cf. Mirtich[23]).

The 1-DOF simulations were initiated from the
2155 rpm forced-spin simulation. As expected, the
motion of the tail immediately responds to the
aerodynamic forces, and the spin rate of the tail be-
gins to vary (cf. Fig. 11). The average spin-rate of
the tail increases every quarter-revolution the tail
completes. Note that the 2155 rpm simulation does
predict a small negative tail rolling moment, i.e.
predicts that the tail is spinning slightly too slow.
The change in average spin-rate each quarter cycle
is less than 0.5% of the mean spin rate, and likewise
the maximum deviation from the mean rate over
each cycle is only ±0.5%. Even with these small
variations in spin-rate, the aerodynamic loads on
both the tail section and the entire missile are pe-
riodic after an initial transient lasting roughly 45◦

of tail rotation. The variation of tail rolling mo-
ment for the 1-DOF free-to-spin simulation is com-
pared to the 2155 rpm forced-spin-rate simulation
and the static simulation in Fig. 12. The tail load
variation closely follows the forced-spin variation,
since the tail acceleration is moderate throughout,
however the amplitude of the load variation in the
free-to-spin simulation is lower as the tail responds
to the aerodynamic forces.
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Figure 11: Tail angular velocity for free-to-spin (1-DOF)
simulation. (M∞ = 1.6, α = 4.0◦).

Since the loads on the tail and the entire mis-
sile are periodic, even though the spin-rate is still
changing slightly, meaningful spin-averages can be
computed for comparison with the forced-spin sim-
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Figure 12: Tail rolling-moment for forced-spin and free-to-
spin simulations (M∞ = 1.6, α = 4.0◦).

ulations. The spin-averaged forces and moments on
the missile for the forced-spin and 1-DOF simula-
tions are presented in Table 1. The maximum dif-
ference in spin-averaged loads between the forced-
spin and 1-DOF simulations is 6%. At these condi-
tions the changes in spin-rate over each cycle, and
by inference the dynamic effects due to the accel-
eration of tail, are both small. Hence the more
computationally-efficient forced-spin technique can
be used in place of a full free-to-spin simulation.
The spin-average can be computed in little more
than a single quarter-revolution with the forced-
spin approximation, while the free-to-spin simula-
tions may take many revolutions to reach a stable
state.

In order to provide more insight into the aero-
dynamics of the spinning-tail configuration, the
α = 4.0◦ static and dynamic (both fixed- and free-
to-spin) results are analyzed using a plot of the
crossflow moments (Fig. 13). Here the yawing and
pitching moments are plotted on the two axes as
the tail spins, along with the spin-averaged val-
ues. In order to make performance predictions, the
spin-averaged forces and moments of the dynamic
configuration are required. While one static con-
figuration does closely predict the dynamic spin-
averaged loads, this is fortuitous, and different ca-
nard settings or flow conditions will behave differ-
ently. The dynamic curves are shifted up and to the
right from the static curve, and maintain the shape
basic shape. This self-similarity is due to the lack
of dynamic effects. The tail provides a “restoring”
moment opposite to the effect the canards provide
ahead of the center of mass. When the tail is free
to spin, this restoring moment is reduced as the
tail moves in response to the aerodynamic forces.
From this point of view, the free-spinning tail be-
haves as if it was an equivalent static tail of smaller
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size. Hence the increment between the static and
dynamic simulations is in the direction the canards
are forcing the body to rotate, in this case nose up
and starboard.
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Figure 13: Crossflow moments for the static and dynamic
simulations. Spin-averaged values are shown with solid cir-
cles. The × and + positions are labeled, along with the
direction of tail spin. (M∞ = 1.6, α = 4.0◦).

Table 1 compares the current inviscid simulations
at α = 4.0◦ with high-resolution, viscous, free-to-
spin simulations computed by Nygaard[11] for the
same missile configuration. The computed spin-
averaged forces and moments for both free-to-spin
simulations are all within 2.5%, with the exception
of pitching moment.∗

3.4 Variation with Angle of Attack

The previous sections outline the aerodynam-
ics of the free-spinning tail section, along with a
methodology for predicting the behavior using a
forced-spin approximation at α = 4.0◦. This sec-
tion will extend the analysis by considering the be-
havior at α = 0.0◦ and 12.0◦. First, static solutions
were computed with the tail in fixed azimuthal lo-
cations to complement the results presented previ-
ously for α = 4.0◦ in Fig. 6. The variation of tail
rolling moment from these series of static simula-
tions is presented in Fig. 14. As expected, the com-
putations at α = 4.0◦ show the highest magnitude
tail rolling moment, as the canard/tail interactions
are strongest at this angle of attack. Correspond-
ingly, the variation at α = 4.0◦ never changes sign,
so that the tail will spin clockwise regardless of the

∗The differences in axial force are not considered as the
inviscid results are not corrected for viscous drag.

initial tail orientation. This differs from the results
at α = 0.0◦ and 12.0◦, which both show statically-
stable tail orientations near φtail = 45.0◦ and 22.5◦

respectively. The spin-averaged tail rolling moment
for α = 0.0◦ is zero since the flowfield is symmet-
ric with respect to the horizontal plane, while the
spin-averaged tail rolling moment at α = 12.0◦ is
not. Whether these statically-stable positions are
also dynamically-stable to small perturbations is
unknown, however it is almost certain that some
conditions (angle of attack, canard setting, ...) do
provide regions of local dynamic stability. The im-
plications of this will be discussed after the dy-
namic simulations at α = 12.0◦ are presented.
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Figure 14: Tail rolling-moment for static simulations at all
angles of attack. (M∞ = 1.6).

Since the static results at α = 12.0◦ indicate
a non-zero spin-averaged tail rolling moment, the
forced- and free-to-spin analysis described in the
previous sections is applied at α = 12.0◦ to pro-
vide insight. The forced-spin iterative method pre-
dicts a tail spin rate of near 500 rpm at α = 12.0◦.
Dynamic forced-spin results were obtained at this
rate, and a 1-DOF free-to-spin simulation was ini-
tiated from the fixed-rate computation and contin-
ued through two quarter-revolutions. The tail spin
rate for the free-to-spin simulation at α = 12.0◦

is shown in Fig. 15, after the initial release from
the 500 rpm forced-spin simulation. The mean tail
spin rate increases by a small amount each quarter-
revolution, but in contrast to α = 4.0◦, the rota-
tion rate varies by ±10% over each cycle - a factor
of 20 more than the variation in Fig. 11. This large
variation in tail spin rate is caused by the torque
being applied over a longer time duration at this
lower spin rate, and indicates that a forced-spin
simulation at a fixed rate is not a good approxima-
tion for the actual motion at this angle of attack
if the tail is spinning. Note that even though the
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CA CY CN Cl Cm Cn

Static 0.48 0.65 1.11 -0.40 -0.22 6.45
Fixed-spin (2155 rpm) 0.53 0.61 1.12 -0.01 -0.16 6.55

Free-to-spin 0.50 0.61 1.12 0.00 -0.17 6.57
Free-to-spin Ref. [11] 0.69 0.60 1.15 -0.01 -0.04 6.49

Table 1: Computed spin-averaged forces and moments on the entire missile. All values are provided using standard
aircraft coordinates. Axial force does not include the missile base section. (M∞ = 1.6◦, α = 4.0◦).

static results indicate a statically-stable tail orien-
tation, the mean tail rotation rate still increases.
The large variation in tail spin rate implies that
the simulation contains large dynamic effects. This
is seen in the crossflow moments plotted in Fig. 16.
The static and dynamic forced-spin results are very
close, as anticipated with this low spin rate, how-
ever the free-to-spin simulation predicts a large in-
crement, and no longer maintains a shape similar
to the static result. This change in shape is caused
by the accelerations on the tail altering the dy-
namic flowfield from the static or forced-spin re-
sults. Since the shape of the crossflow plot can
change almost arbitrarily under these conditions it
is not reliable to use a simpler approximation, such
as static or forced-spin, and apply a post-processing
correction.
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Figure 15: Tail angular velocity for free-to-spin (1-DOF)
simulation. (M∞ = 1.6, α = 12.0◦).

The behavior of the tail rolling moment with
varying angle of attack indicates that the actual
behavior of the tail section is likely multi-valued.
The results at α = 12.0◦ demonstrate the possibil-
ity that a fixed tail orientation can be stable, while
at the same time indicate strongly that an initially
spinning configuration may not decay (stop spin-
ning) at this same angle of attack. This implies
that the state of the tail section at any time, and
by inference the loads on the missile, is dependent
upon the past time history of the missile configu-
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Figure 16: Crossflow moments for the static and dynamic
simulations. Spin-averaged values are shown with solid cir-
cles. The × and + positions are labeled, along with the
direction of tail spin. (M∞ = 1.6, α = 12.0◦).

ration. Depending upon the initial state and the
path through time, different behavior can be ob-
served. For example, in the current configuration at
α = 12.0◦, if the canards are initially undeflected,
the flow will be symmetric and the tail will not
be spinning. If the canards are then deflected, it’s
plausible that the tail section will remain fixed at
the static stability point. However, if the canards
are initially deflected at α = 4.0◦ so that the tail is
spinning at a high rate, and the body is pitched up
to α = 12.0◦, then it is plausible that the tail will
remain spinning. Without knowledge of this time
history it cannot be predicted in general whether
to use a static analysis, a forced-spin analysis, or
a full free-to-spin simulation. Further, the state of
the spinning tail is also dependent upon its iner-
tial properties. Note that this requires the inertial
properties of a wind tunnel model to be scaled ap-
propriately to predict the correct dynamic behavior
of the actual system. Based upon the current re-
sults, the tail section can remain fixed, can rotate
constantly, or could continually oscillate between
the extremes of fixed and rotating tails. All of these
behaviors have been observed during unpublished
experimental tests of the current configuration.
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4 Summary

The canard-controlled missile with a free-
spinning tail section considered in the current work
provides a difficult challenge for CFD methods.
The geometry is extremely complex, and contains
many scales and small clearances which must be
resolved. The physics of the canard/tail interac-
tion requires a significant volume mesh resolution,
which places an emphasis on the efficiency of any
solution process. Finally, in general the dynamic
tail section requires a moving-body flow solver cou-
pled with a 6-DOF module in order to provide
an accurate analysis. An automated 3-D Carte-
sian method for analyzing complex geometries with
components in relative motion has been demon-
strated. The complete CFD solution process is au-
tomated: a surface triangulation is automatically
generated from a CAD solid model, the volume
mesh is automatically generated using the Carte-
sian scheme, and the dynamic flow solver is robust
and efficient, and can handle any general rigid-body
motion through a simple interface.

Three levels of fidelity were applied to analyze
the missile with spinning-tail section at M∞ =
1.6◦: a series of static simulations with the tail
in fixed azimuthal orientations, a forced-spin dy-
namic simulation using an iterative approach to de-
termine an appropriate fixed spin-rate, and a free-
to-spin simulation using a flow solver coupled with
a constrained 6-DOF module. The analysis of the
spinning-tail configuration indicates that the choice
of a static, forced-spin, or free-to-spin analysis can-
not in general be made a priori. Attempting to cor-
rect low-fidelity results in a post-processing phase
is also not possible in general due to the large dy-
namic effects which the spinning-tail configuration
can generate. A variation in tail rolling moment
can indicate regions of static stability, however this
same variation can imply that an initially spinning
tail will continue to spin. Further, the behavior
of the dynamic tail section is likely multi-valued,
and hence the state for any configuration is depen-
dent upon the past history of the missile and its
actual inertial properties. The investigation indi-
cates that the tail section can remain fixed, can
rotate constantly, or could continually oscillate be-
tween the extremes of fixed and rotating tails, and
that all of these behavior could plausibly occur at
the same flow conditions and control surface set-
tings depending upon the previous history. The
detailed information from a CFD analysis provides

the insight which is required to understand, and
ultimately predict, the behavior of such a complex
system.
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